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Empirical relationships for the surface tension of liquid metals (LM) are shown
to follow from the principle of corresponding states. In order to relate the
surface tension of LM to its bulk properties, a formula is derived by scaling with
the melting point Tm(0) at the atmospheric pressure, p=0 and the atomic
volume Wm(0) at the melting point as macroscopic parameters for scaling e and
a characterizing the interatomic potential F(r)=eF*(r/a). Correlation rules,
derived for the surface tension and its temperature coefficient, are discussed and
compared with experimental data.
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1. INTRODUCTION

The surface tension, c, of liquid metals (LM) is one of the fundamental and
most important quantities in the theory and practice of materials process-
ing (crystal growth, welding, sintering), and its temperature dependence
governs the well-known Marangoni convection on the surface of melts.
Although measurement methods of c are sufficiently precise, there is still
uncertainty regarding its absolute values and particularly its temperature
coefficient mainly due to impurities, which affect strongly the results of
measurements. The theoretical treatment from first principles is unwieldy
and does not always enable one to calculate reliable values of c as a func-
tion of temperature. Another active research field deals with semi-empirical



predictions based on the correlation between the surface and bulk thermo-
dynamic properties [1–5]. The Stephan rule [1], one of the first that links
c to the heat of evaporation Le of the substance,

c3
Le
W2/3

(1)

where W is the atomic volume, is widely used in processing experimental
data on liquid and solid metals [2, 4–7]. Other empirical relations relate
c with bulk properties of metals (e.g., melting point, critical temperature,
Young’s modulus, isothermal compressibility) under different approaches
[7–16].
We would like to point out a simple way of interpreting these relations

as a consequence of the law of corresponding states (CS) [17], which
implies the existence of a universal function of reduced surface tension
versus reduced temperature. Scaling relations based on the CS principle
provide a simple explanation for well-known empirical rules and permit
establishment of new ones. As an example, a new CS rule for the surface
tension and its temperature coefficient of LM is derived.

2. THEORETICAL BACKGROUND

To apply the law of CS to LM, two fundamental theoretical approaches
should be emphasized. The first approach assumes that the total potential
energy of atomic interaction is the sum of the interaction energies of pairs
of atoms, and the second assumes that the potential energy of a pair
interaction must be written in the form of a spherically symmetric function,

F(r)=eF*(r/a) (2)

Here, F*(r/a) is a universal function, equal to −1 when r=a, while the
characteristic energy e and the characteristic length a vary from one metal
to another. If these conditions are satisfied, the partition function of a
system of N atoms characterized by e and a is a universal function of the
reduced variables, temperature T*=kT

e , and volume V*=
V
Na3
, k being the

Boltzmann constant. Any physical property derived from that partition
function can be written as a function of these variables [17].
Although atomic interactions in metals cannot be introduced as

pairwise, certain metallic ground-state energies obey the universal relation-
ship, Eq. (2) [18]. Moreover, a total effective pair potential and pair cor-
relation function in LM supports the existence of CS. We summarize these
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treatments with the structure model of LM recently discussed by Wallace
[19] to find an equivalent approximation for the partition function of ion
motion in LM with a free surface. In particular, far from the critical point,
the reduced partition function for ion motion in the bulk can be written in
classical quasi-harmonic approximation [19]

ZI % wN exp 1−
NFg

0l

T*
2 D
3N

j

T*
l*ngj

(3)

where the factor wN accounts for the number of random liquid structures
in the bulk; Fg

0l=F0l/Ne is the reduced liquid static structure potential
per ion; and {ngj } is the set of the reduced 3N harmonic normal modes,
which are a universal functions of V* · only. Here, l*ngj ° T*, where l*=
h/(a`Me), h is Planck’s constant, and M denotes the mass of ion. The
error in writing Eq. (3) lies in the neglect of the anharmonic and ‘‘bound-
ary’’ effects [19].
Using the reduced form of the thermodynamic relations p=−(“F

“V)T
and F=−kT ln Z, where F is the Helmholtz free energy of the system,
F*=F/Ne, one obtains the reduced equation of state

p*=−1“F*
“V*
2
Tg
=−1“F

g
0l

“V*
2
Tg
−
T*
NV*

C
3N

i=1

1 “ ln ngi
“ ln V*
2
Tg

(4)

which is a universal function connecting p*, V* and T*. Since the existence
of the liquid and solid phases reduces the variance of the system to unity
on the line separating them, the reduced temperature depends only on p*

Tg
m(p*)=g*(p*) (5)

where g*(p*) means the universal function p*. At normal pressure, p* % 0,
Tg
m(0) is a universal constant and

Tm(0)=
Tg
m(0)
k
e (6)

i.e., Tm(0) will serve as a good measure for the energy scale parameter e. It
should be noted that proportionality between experimental data cohesion
energy and melting point is indeed observed.
On the other hand, V* is a universal constant at p*=0 and Tg

m, (see
Eq. (4))

Vm/N=Wm=Vg
ma
3 (7)

where Wm is the atomic volume at p=0, and Tm.
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3. SURFACE TENSION OF LM

The reduced surface tension can be written from simple dimensional
considerations, using the scaling constants k, a, and e or k, W1/3m , and Tm(0), as

c*=c
a2

e
=c

W2/3m
kTm(0)

Tg
m(0)
Vg2/3
m

(8)

and from the thermodynamic definition

c*=3“F*
“A*
4
T*, V*, N

(9)

where F* is the reduced free energy of an LM with a free surface, A* is
the reduced surface area introduced as A*=A/a2=AVg2/3

m /W2/3m , where
A=Nwwm, Nw being the number of atoms on the surface, wm=fW

2/3
m is

the area occupied by one atom, and f is a factor which accounts for the
‘‘structure’’ of the LM; thus, A*=fVg2/3

m Nw and we have

c*=
1

fVg2/3
m

3“F*
“Nw
4
T*, V*, N

(10)

The reduced free energy F* can be evaluated from the reduced partition
function for an LM with a free surface. To write it we use the structure
model of an LM as discussed by Wallace [19], and the free surface is
assumed as consisting of Nw ions moving in the structure potential F

w
ol

within two atomic layers and forming wNww random ‘‘surface structures.’’
The latter differs from that of the bulk due to the breaking of bonds and
the change symmetry. The reduced partition function of such an inhomo-
geneous system can be written as that of a system formed from N−Nw
volume and Nw surface ions

Z % wN−NwwNww exp 1−
(N−Nw) Fg

0l+NwF
wg
0l

T*
2 D
3N−3Nw

j

T*
l*ngj

D
3Nw

j

T*
l*ngjw

(11)

where Fwg0l =F
w
0l/Nwe is the reduced liquid surface structure potential per

ion and {ngjw} is the reduced set of 3Nw harmonic normal surface modes.
Introducing the reduced bulk and surface characteristic frequencies as

ln l*ñ*=
; j ln l*ngj
3(N−Nw)

(12)

ln l*ñgw=
; j ln l*ngjw
3Nw

(13)
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and F*=−T* ln Z, one obtains from Eq. (10) with Eq. (11)

c*=5(Fwg0l −Fg
0l)+T* ln

ñw

ñ
−T* ln

ww
w
6;f·Vg2/3

m (14)

At p* % 0, c* is a universal function of T* only, not of both T* and V*
since the coexistence of the liquid and vapor phases reduces the variance of
the system to unity. This statement can be easily proved also from simple
dimensional considerations. The surface tension c may be written in terms
of the dimensionless group c*, which depends on p*, T*, k, M, a, and e.
Since no dimensionless combination of k, M, a, and e exists, c* is inde-
pendent of these parameters and at p* % 0 depends on T* only.
Now, combining Eqs. (14) and (8) we obtain the equation for the

surface tension

c(T)=
kTm
W2/3m

[c1+c2(T/Tm)] (15)

Here, c1=
F
wg
0l −F

g
0l

fTg
m(0)

and c2=(ln
ñw
ñ − ln

ww
w )/f are universal constants and

W2/3m should be taken as temperature-dependent to account for the change
in the surface area due to thermal expansion.

4. CALCULATIONS AND COMPARISION WITH EXPERIMENTAL
DATA

Evaluation of c1 and c2 is not easy, but rough calculations are obtained
with the nearest-neighbor interaction model [2–4, 8]. In the framework of
this model the difference Fwg0l −Fg

0l=m is associated with a decrease of the
number of nearest neighbors at the surface, where m is the fraction of
broken atom bonds on the surface with respect to the bulk. Since the
surface structure of LM is not known with certainty, we expect that the
averaged expression, Eq. (15), over the low-index crystal faces of a
hexagonal closed-packed fcc structure will be even closer to the description
of the LM surface near the melting point. As a result, we have

7m
f
8=; i mi gi/wg

i

; i gi
(16)

Here, gi is the statistical weight of the crystallographic face: g100=6;
g110=12; g111=8; wg

i is the surface area of the crystal face per atom scaled
to W2/3m and equal to fi: wg

100=1.54; wg
110=2.18; wg

111=1.33; m100=1/3;
m110=5/2 and m111=1/4. Using these data yields O

m
fP=0.196 and with
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empirical constant 1/Tg
m(0) % 27, obtained from Eq. (6) as coefficient

proportionality between experimental data of the cohesion energy and the
melting point of metals, we find c1=5.29.
To calculate c2 we use ñw/ñ=`1−m from Madelung’s consideration

[8] and estimate wNww as the number of virtual configurations from
numbers of surface atoms Nw plus nearest neighbors Nn in the liquid phase
and free sites N0 (due to missing neighbors) in the complete configuration
group from Nw+Nn+N0=13 atoms, then

ln ww=
1
Nw
[13 ln 13−(Nw+Nn) ln(Nw+Nn)−N0 lnN0] (17)

Using Eq. (16) for averaging over the faces with low indices, we obtain
c2=−0.73.
The temperature dependence of the atomic volume Wm(T) is written

under the assumption that the coefficient of thermal expansion a is con-
stant

Wm(T)=Wm[1+aTm(T/Tm−1)] (18)

Using the empirical rule aTm % 0.09 [20], which applies to all metals, we
rewrite

W−2/3m (T) % W−2/3m [1−0.06(T/Tm−1)] (19)

Substituting Eq. (19) in Eq. (15) and using the calculated c1 and c2, we
obtain

c(T)=4.56
kTm
W2/3m
51−0.13 ·1 T

Tm
−126

1.67

(20)

Here, the expression preceding the square brackets is the surface tension at
the melting point, cm, which is thus seen to be proportional to Tm/W

2/3
m .

cm % 4.56
kTm
W2/3m

(21)

Taylor [9] and subsequently Allen [10] discussed this proportionality in
processing experimental data. Reynolds et al. [11] obtained empirically

cm=4.77
Tm
r20

(22)
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Fig. 1. Surface tension of LMs at their melting point, cm versus
kTm/W

2/3
m . Dots: experimental data. Solid line: predicted by Eq. (21).

where r0 is the nearest neighbor separation. When r0 is expressed in terms
of Wm, Eqs. (21) and (22) are essentially identical. Reynolds et al. justified
Eq. (22) on the basis of a pair potential model. Here, we see that it is a CS
relation, which is immediately apparent from Eqs. (14) and (8). The vali-
dity of Eq. (21) was tested on 45 reasonably reliable experimental data
[12, 13]. For the molar volume Wm(0) at Tm, data from Ref. 14 were used.
The plot of cm versus Tm/W

2/3
m does indeed fall on a straight line passing

through the origin with a slope of 3.92 (see Fig. 1) which agrees within 16%
with the one predicted by Eq. (21). Since cm is proportional to Tm/W

2/3
m , it is

possible to make use of cm and Tm to establish the scales c and T. In this
way an alternative expression, equivalent to Eq. (8) and due to Eq. (20), is
obtained,

c*=
c(T)
cm
=51−0.13 1 T

Tm
−126

1.67

(23)

This equation was confirmed by experimental data for sodium rec-
ommended by Goldman [14], and lithium suggested by Keene [12] and
Bohdansky et al. [15] (see Fig. 2). As can be seen, the agreement with
experiment is excellent. Small deviations near the melting point may be
related to the anharmonic effect, which is disregarded here. When the cri-
tical temperature is approached, one can expect considerable deviations
above 4Tm due to the ‘‘boundary effect’’ [19], which we also disregard
here.
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Fig. 2. Reduced surface tension of LM c/cm versus T/Tm. Circles: exper-
iment for Na [14]. Squares: experiment for Li [12, 15]. Solid line: present
work with Eq. (23).

The temperature coefficient of c is obtained by differentiation of Eq. (23)
with respect to T

“c

“T
%−0.217

cm

Tm
51−0.13 1 T

Tm
−126

0.67

(24)

from which follows the CS rule for “c
“T at the melting point

“c

“T
:
Tm

%−0.217
cm

Tm
(25)

This rule was tested for 25 LMs from different structure groups. The plot
of “c

“T |Tm versus
cm
Tm
is shown in Fig. 3, from which it is seen that the propor-

tionality coefficient 0.226 found empirically is in agreement with the
prediction from Eq. (25) within 4%. Substitution of aTm % 0.09 [20] in
Eq. (25) yields another rule,

“c

“T
:
Tm

%−2.4acm (26)

recently reported by Tegetmeier et al. [16] under semi-empirical consider-
ations for semiconductor melts with the coefficient 2.3, which as can be
seen is a CS relation also.

1388 Digilov



mN· m -¹·K -¹        
mm T/γ , 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.25 0.5 0.75 1 1.25

T
e
m

p
e
ra

tu
re

 c
o
e
ff
ic

ie
n
t 
o
f 
s
u
rf

a
c
e
 t
e
n
s
io

n
, 
m

N
. m

-1
. K

-1

Experiment

CS Eq. (25)

Fig. 3. Temperature coefficient of the surface tension of LMs at their
melting point, “c

“T |Tm versus cm/Tm. Dots: experimental data. Solid line:
predicted by Eq. (25).

5. CONCLUSION

An analytical expression for the reduced surface tension of pure LM
is derived in terms of Wallace’s liquid dynamical theory and under the
assumption of similarity of the static structure potential. The equation is a
function of the reduced temperature only and applies to all normal melting
metals, including semiconductors, and not for alloys below their critical
temperatures. Well known empirical and semi-empirical relations between
surface and bulk quantities of LM as well as new relations follow from this
equation, which allows one to conclude that the connections between
surface and bulk properties are a consequence of the law of CS.
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